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Abstract
For manifolds M of noncompact type endowed with an affine connection (for
example, the Levi–Civita connection) and a closed 2-form (magnetic field),
we define a Hilbert algebra structure in the space L2(T ∗M) and construct
an irreducible representation of this algebra in L2(M). This algebra is
automatically extended to polynomial in momenta functions and distributions.
Under some natural conditions, this algebra is unique. The non-commutative
product over T ∗M is given by an explicit integral formula. This product
is exact (not formal) and is expressed in invariant geometrical terms. Our
analysis reveals that this product has a front, which is described in terms of
geodesic triangles in M. The quantization of δ-functions induces a family of
symplectic reflections in T ∗M and generates a magneto-geodesic connection
� on T ∗M. This symplectic connection entangles, on the phase space level,
the original affine structure on M and the magnetic field. In the classical
approximation, the h̄2-part of the quantum product contains the Ricci curvature
of � and a magneto-geodesic coupling tensor.

PACS numbers: 02.40.−k, 11.10.Nx

1. Introduction

There is a well-known quantum product defined by Groenewold [1], Moyal [2] and Berezin [3]
over the phase space R2n. This non-commutative associative product of functions corresponds
to the Weyl symmetrization rule for ordering the quantum coordinates q̂j and momenta p̂k

which obey the canonical commutation relations

[q̂j , q̂k] = 0, [q̂j , p̂k] = ih̄δ
j

k , [p̂j , p̂k] = 0. (1.1)
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In the classical limit h̄ → 0, this quantum product reduces to the usual product of functions
over R2n and yields the standard symplectic structure dp ∧ dq on R2n.

There is also a magnetic analogue [4, 5] of this quantum product, where p̂ plays the role
of the kinetic momenta and satisfies the commutation relations

[q̂j , q̂k] = 0, [q̂j , p̂k] = ih̄δ
j

k , [p̂j , p̂k] = ih̄Fkj (q̂). (1.2)

Here, F is the Faraday tensor (the strength of the magnetic field for n = 3). The small h̄

asymptotics of this product generates the ‘magnetic’ symplectic structure on R2n

ω = dp ∧ dq + 1
2F(q) dq ∧ dq. (1.3)

The magnetic algebra generated by relations (1.2) is an interesting and useful object for
physical and mathematical applications [6–15]. In particular, the case of quadratic magnetic
field F represents an example of quadratic quantum algebra (1.2) which corresponds to the
symplectic space R2n of constant non-zero curvature [5]. Also, it is useful to recall that the
form of relations (1.2) is gauge invariant, i.e. it does not depend on the choice of magnetic
potential, and so all the calculations in this algebra are gauge independent a priori.

One would like to examine what happens in this framework if the flat q-space Rn is
replaced by a curved manifold M. This means that the Euclidean metric on Rn is replaced by
a Riemannian metric, or more generally, by an affine connection � on M. Accordingly, the
phase space R2n is replaced by the cotangent bundle T ∗M.

The fundamental question arises: how to define a quantum product over T ∗M which
would naturally generalize the products appearing in the Euclidean cases (1.1) and (1.2) and
incorporate the connection � on M? This is an old quantization problem, which was posed
by Dirac [16] and Mackey [17] and initially studied in [18–24] and other works.

The recent mathematical investigation of this problem has been carried out in [25–33]
including the case where the metric and the magnetic field are both present on M [25, 26, 33].
There is also a large literature, beginning with the paper by Widom [34], where this problem
was studied from the perspective of pseudodifferential and Fourier integral operators.

In spite of certain essential progress, there remain many significant open questions in this
problem area.

First, we note that the papers cited above do not address the following questions.
How does the connection � entangle with the magnetic field F on M via the quantization

process? Are � and F combined in a natural geometrical way?
This family of questions closely parallels the issues raised in Weyl’s discovery of the gauge

principle. In [35], Weyl constructed a connection on the configuration space which combined
the Levi–Civita metric connection with the magnetic potential and was ‘gauge’ invariant.
Subjected to Einstein’s criticism [36] that the construction was incompatible with physical
reality, Weyl revised the direction of his programme (and soon invented the beginnings of
modern gauge theory). Nevertheless, we now think that Weyl’s original intention finds very
strong support in the quantization theory where one has a natural opportunity to extend
configuration space M to the phase space T ∗M and re-examine the ‘connection problem’
therein.

Secondly, although all the works dealing with the quantization problem over T ∗M use
more or less the same core idea for generalizing the Groenewold–Moyal product (just replace
in the phase functions all the straight chords by geodesics), there is a wide variation in
the definition of the amplitude functions. This variety of amplitudes illustrates the known
phenomena of the non-uniqueness of quantization.

Even in the Euclidean example, an aspect of this non-uniqueness is present and correlates,
for instance, with the ordering problem, cf [4, 37, 38]. In the Euclidean case, conditions which
uniquely identify the Groenewold–Moyal product and Weyl ordering are known [39–41]; in
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the context of formal deformation theory, see the discussion in [42–44]. The main idea in all
these approaches is to exploit certain symmetry group actions. For inhomogeneous manifolds
M, this is not possible. So, the question remains open: how to select a unique quantization
on M?

Thirdly, one may claim that in the literature there is still no explicit formula for the
quantum product over T ∗M, even for the simplest examples of curved manifolds M, even
with no magnetic field.

We mean here an exact formula, not a formal deformation one. Such an exact
formula could be applied, for instance, to highly oscillating or singularly concentrated (as
h̄ → 0) functions on T ∗M which are required to describe Schrödinger quantum dynamics or
eigenfunction problems on M. On this topic, we recall the asymptotic quantization theory
[45] which allows this type of ‘semiclassical’ h̄-dependence in its symbols and deals with
symplectic manifolds of general type without having a global polarization. However, for
symplectic manifolds, ≺T ∗M, ω�, it is natural to ask more: namely to obtain an exact, not
semiclassical, quantization formula which is globally and geometrically stated on T ∗M.

In this paper, we present solutions to these questions in the case where the configuration
manifold M is geodesically simply connected. As an example, one can take M to be a
symmetric Riemannian manifold of noncompact type, say, the hyperboloid in the Minkowski
space and, in particular, the Lobachevski plane. Another class of examples is given by
manifolds M ≈ Rn whose metric is a deformation of the Euclidean one.

Part of the results described below can also be applied to generic curved manifolds M,
for instance to compact manifolds.

The magnetic field F can be an arbitrary closed 2-form on M.
By using the averaging of F along geodesics, we define symplectic transformations of

the phase space ≺T ∗M, ω� which correspond to autoparallel vector fields on M. This is a
magneto-geodesic analogue of the Galilei translations in Rn. We introduce unitary operators
in L2(M) corresponding to these symplectic transformations and exploit them to select in a
unique way the quantization operation

f → f̂ (1.4)

on a function space over T ∗M (section 3).
The mapping (1.4) determines an exact irreducible representation of the Hilbert algebra

L2(T ∗M) in the Hilbert space L2(M). We also extend this mapping to a wider algebra which
includes, in particular, functions on T ∗M polynomial in momenta, some exponential highly
oscillating functions as h̄ → 0, delta functions, etc. Note that we are employing here the
Hilbert algebra approach to quantization theory. If one examines the C∗ algebra corresponding
to our quantum Hilbert algebra over T ∗M, then it is of the strict quantization type [46].

At the next stage in section 4, we analyse which symplectic transformations σx of the
phase space ≺T ∗M, ω� correspond to the quantum δ-functions, δ̂x . In this way, a family
of magneto-geodesic reflections on the space T ∗M is obtained. They are the phase space
analogues of the geodesic reflections in M interacting with the magnetic field.

In section 5, we use the related σ -reflective curves to represent the quantum product �

over T ∗M which corresponds to the quantization operation (1.4) in the usual way

f̂ ĝ = f̂ � g. (1.5)

The product � is given by an exact, explicit and geometrically invariant integral formula (5.16).
This formula can be used for different subalgebras of functions over T ∗M. Being

restricted to the subalgebra of polynomial in momenta functions, this formula works for the
case of a generic affine manifold M (possibly not geodesically simply connected).
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In section 6, we prove that the asymptotic expansion of the exact quantum product as
h̄ → 0 has the following form:

f � g = fg − ih̄

2
f 〈←−∇ �

−→∇ 〉g − h̄2

8
f [〈←−∇ �

−→∇ 〉2 + 3〈←−∇ �R�
−→∇ 〉]g + O(h̄3). (1.6)

Here,

� =
[

0 −I

I F

]
is the Poisson tensor on T ∗M associated with the symplectic structure (1.3), ∇ denotes the
covariant derivative corresponding to a symplectic connection � on ≺T ∗M, ω� defined by
magneto-geodesic reflections (cf (6.5)) and R is the Ricci tensor of this connection. The
phase space covariant derivative ∇ appearing in the asymptotic expansion (1.6) matches our
quantization formulae with the deformation quantization [18, 22, 28, 29, 42, 47–50]. In the
deformation quantization framework, the symplectic connection corresponding to a given star
product is determined by the h̄2-term via a formula like (1.6).

In our approach, the connection � is derived in a different way, via σ -reflections. In
section 6, the explicit formulae are obtained for the connection � and for its curvature in terms
of � and F. These formulae entangle the configuration space data � and F on the phase space
level. We call � a magneto-geodesic connection.

The part of � which depends on the magnetic field F we call a magneto-geodesic coupling.
This is a 3-tensor on M. In the case of a Riemannian manifold M with a Levi–Civita
connection ∇, this tensor is equivalent to the one which arises in the inhomogeneous Maxwell
equation (with current and charge).

The preprint version of this paper is found in quant-ph/0505144.

2. Preliminary definitions and notations

After von Neumann [51], Wigner [52], Groenewold [1] and Stratonovich [53], it was
understood that the basic object of the quantization theory is a Hilbert algebra together with
its exact irreducible representation in a Hilbert space.

By definition (see, for instance, in [54]), the Hilbert algebra L is a complete linear space
with three structures: an associative product �, a scalar product (·, ·) and an involution ∗, which
are mutually consistent.

Let H be a Hilbert space. Then, the minimal Hilbert algebra which has an irreducible
representation in H is the algebra of all Hilbert–Schmidt operators on H.

The basic idea of quantization theory is to replace the operator algebra by a function
algebra over an appropriate phase space. Following the correspondence principle, one is
taking H to be

H = L2(M, dm),

where M is a configuration space, i.e. a smooth manifold with a smooth positive measure dm.
The phase space is then defined as T ∗M, i.e. the cotangent bundle over M, and the Hilbert
algebra is assumed to be

L = L2(T ∗M, dl).

Here, dl is the normalized Liouville measure

dl(x) = dx

(2πh̄)n
, dx = dq1 · · · dqn dp1 · · · dpn,
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where x = (q, p), q ∈ M, p ∈ T �
q M, n = dimM. So, the scalar product in the algebra L is

given by

(f, g) = 1

(2πh̄)n

∫
T ∗M

f (x)g(x) dx

and the involution is given by the complex conjugation

f ∗ = f .

In addition to the scalar product, there is the trace functional

tr(f ) ≡ 1

(2πh̄)n

∫
T ∗M

f (x) dx,

where f ∈ L1(T ∗M, dl). We ask that the product in the algebraL obey the following property:
the ideal L1 ≡ L � L is a subset of L1(T ∗M, dl) and

tr(f � g) = (f, g) (2.1)

for any f, g ∈ L.
The representation of the algebra L in the Hilbert space H is denoted by

f → f̂ (2.2)

and is assumed to satisfy the usual axioms

f̂ † = f̂ , f̂ ĝ = f̂ � g, Tr(f̂ ) = tr(f ). (2.3)

Here, Tr indicates the operator trace and † the adjoint. The last axiom is restricted to the
subspace L1.

The inverse to the mapping (2.2) is called dequantization or symbol mapping

f̂ → f = Smb(f̂ ).

It is convenient to write the quantization mapping (2.2) in the integral form

f̂ =
∫

T ∗M
f (x)�x dx, (2.4)

where {�x} is a family of operators in H, parameterized by points x ∈ T ∗M. Then, the
symbol mapping is given by

f (x) = (2πh̄)n Tr(f̂ �x). (2.5)

The first and third axioms in (2.3), together with (2.1), as well as definition (2.4), together
with (2.5), are reformulated in terms of the operator family � as follows:

�†
x = �x, (2πh̄)n Tr(�x�y) = δx(y), (2πh̄)n

∫
T ∗M

�x ⊗ �x dx = I. (2.6)

Here, δ is the Dirac delta function with respect to the canonical measure on T ∗M and I is the
antipodal operator ψ ⊗ χ → χ ⊗ ψ on Hilbert space H ⊗ H.

The second axiom in (2.3) reads

(f � g)(x) =
∫

T ∗M

∫
T ∗M

K�(x, y, z)f (y)g(z) dy dz, (2.7)

where the distribution K� is defined as

K�(x, y, z) = (2πh̄)n Tr(�x�y�z). (2.8)

Of course, in formulae (2.4)–(2.8), appropriate care must be taken with respect to the
convergence of integrals and traces (using the weak topology and a suitable distribution
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extension of functions). For instance, the distribution character of Tr(�x�y) and Tr(�x�y�z)

is defined by first integrating the operator-valued functions with C∞
0 test functions and after

that computing the trace.
Various symmetry properties follow directly from the definition of K� in (2.8): it is

invariant under any cyclic permutation of its arguments, and it obeys K� → K� under the
permutation of any pair of its arguments.

The family � was introduced by Stratonovich [53] for the case M = Rn. In [55], such a
family was called a quantizer. See also details and examples in [56–60].

One can call the last two quantizer properties in (2.6) orthonormality and operator
completeness, respectively. The identities in (2.6) imply that quantization (2.4) and
dequantization (2.5) are mutually consistent.

In the next section, we construct the quantizer using the affine connection and the magnetic
field on M, and then apply formulae (2.7) and (2.8) to calculate the quantum product over
T ∗M. But before that, we need to demonstrate how the �-product can be extended to other
classes of symbols beyond the algebra L.

Let F be any subalgebra in L. Denote by F ′ the space of linear functionals on F .
Employing the canonical measure, we identify functionals with distributions on T ∗M via

〈f, h〉 =
∫

T ∗M
f (x)h(x) dx, f ∈ F ′, h ∈ F .

Obviously, F ⊂ F ′. Further note that F ′ is an F-module, i.e. f ∈ F ′, k ∈ F ⇒ f � k ∈ F ′,
k � f ∈ F ′, where by definition

〈f � k, h〉 def= 〈f, k � h〉, 〈k � f, h〉 def= 〈f, h � k〉, ∀h ∈ F . (2.9)

Denote by F� the following subset:

F� = {f ∈ F ′|f � h ∈ F and h � f ∈ F,∀h ∈ F}.
In particular, F ⊂ F�.

We call F a normal subalgebra if the set F� obeys the property

〈f, h � g〉 = 〈g, f � h〉, ∀f, g ∈ F�, ∀h ∈ F . (2.10)

If F is a normal subalgebra in L = L2(T ∗M), then the set F� is endowed with the algebra
structure

〈f � g, h〉 def= 〈f, g � h〉, ∀f, g ∈ F�, ∀h ∈ F, (2.11)

which is consistent with the involution f � g = g � f .

Verification of the embedding f � g ∈ F� and the �-associativity is achieved by repeated
applications of (2.9)–(2.11) in combination with the associativity of F . The algebra F� is a
natural extension of the subalgebra F .

Note that the unity function 1 does not belong to F or L, but is automatically an element
of F� and 1 � f = f � 1 = f,∀f ∈ F�. So, F� is an involutive algebra with unity.

In the next section, we introduce a concrete example of a normal subalgebra F ⊂ L and
its extension F∗ suitable for quantizing the phase space T ∗M. In the case M = Rn, similar
extensions were used in [15, 61–64].

3. Quantization and dequantization over T ∗M

Let M be a smooth oriented manifold with an affine torsion-free connection � and a smooth
positive measure dm.
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Figure 1. Geodesic triangle πq(q ′) in M.

We assume that M is geodesically simply connected, that is, every pair of points is
connected by a unique geodesic, and moreover this geodesic is infinitesimally isolated (has no
conjugate points).

For any q ∈ M, we use the notations

Vq = exp−1
q

, sq = exp
q
(−Vq),

jq = 2−n|det(∂Vq + ∂Vq(sq))|, ∂Vq ≡ ∂Vq

∂q
,

Jq = jq

Dm(sq)

Dm
, eq ≡

Dm(exp
q
(v))

µ(q)Dv

∣∣∣∣
v=Vq

.

In these formulae, one has the following objects:

• the exponential map exp
q

: TqM → M which is everywhere non-degenerate;

• for any q ′ ∈ M, the vector Vq(q
′) ∈ TqM is the velocity on the geodesic connecting q

with q ′ in unit time;
• the mapping sq : M → M is the geodesic reflection about point q, sq

2 = id;
• the Jacobian jq ∈ C∞(M) is invariant under the reflection sq ;
• µ > 0 denotes the density of the measure on M, so that dm(q) = µ(q) dq;
• the Jacobian Dm(sq)/Dm ∈ C∞(M) is obtained by transforming the measure dm under

the diffeomorphism sq ;
• the Jacobian eq ∈ C∞(M) determines the transformation of the measure dm under the

diffeomorphism exp
q
.

In addition, let F be a closed 2-form on M. We fix an arbitrary point o ∈ M and define
the function �q ∈ C∞(M) as

�q(q
′) =

∫
πq(q ′)

F. (3.1)

Here, πq(q
′) is a two-dimensional surface in M whose oriented boundary is composed of

three geodesics (figure 1): the geodesics from q ′ to o, from o to sq(q
′) and from sq(q

′) back
to q ′. The values of the function �q are just the magnetic flux through the surfaces πq .

Now we are ready to define the quantizer {�x |x ∈ T ∗M}. This family of operators is
determined by its integral kernels �x(a, b)

(�xψ)(a) =
∫
M

�x(a, b)ψ(b) dm(b), ψ ∈ D(M).

Here and below, we denote by D(N ) ≡ C∞
0 (N ) the space of all compactly supported C∞-

functions on a manifold N .
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Let x = (q, p), so that p ∈ T ∗
q M. We set

�x(a, b)
def= 1

(πh̄)n

√
Jq(a) exp

{ i

h̄
(2pVq(a) + �q(a))

}
δsq (a)(b), (3.2)

where δ is the delta function on M with respect to the measure dm; the product pVq(a)

represents the natural pairing of the covector p and the tangent vector Vq(a) in TqM.

Lemma 1. The family of operators {�x} defined by the integral kernels (3.2) obeys properties
(2.6) and so is a quantizer:

�x(a, b) = �x(b, a),

(2πh̄)n
∫
M

∫
M

�x(a, b)�y(b, a) dm(a) dm(b) = δx(y), (3.3)

(2πh̄)n
∫

T ∗M
�x(a, b)�x(c, d) dx = δa(d)δb(c).

The proof follows directly from definition (3.2) by simple computation of integrals
containing delta functions.

For some manifolds M, the function jq may be unbounded. In this case, the quantizer
�x is an unbounded operator but remains self-adjoint with domain D(�x) = {ψ ∈
H| ∫ jq |ψ |2 dm < ∞}. The family {�x} and all x-derivatives are strongly continuous on
D(M).

Recall that the operators f̂ are defined by formula (2.4). Let F denote the integral kernel
of the operator f̂ ,

(f̂ ψ)(a) =
∫
M

F(a, b)ψ(b) dm(b), ψ ∈ D(M). (3.4)

For simplicity, we assume that F ∈ D(M × M).
Applying formula (2.5), one obtains the analogue of the Wigner transform.

Lemma 2. The symbol f is constructed from the kernel F via

f (q, p) =
∫

TqM
e−iup/h̄(kF)

(
exp

q

(u

2

)
, exp

q

(
−u

2

))
µ(q) du. (3.5)

Here, the function k is given by

k(a, b)
def= (ja∨b(a)ea∨b(a)ea∨b(b))1/2 exp{−i�a∨b(a)/h̄}, (3.6)

and a ∨ b denotes the geodesic midpoint (figure 2), that is

sa∨b(a) = b. (3.7)

The inverse transform from symbol to kernel results from (2.4). Denote the Fourier image
of f in the momentum variable by

f ∼(q, u)
def= 1

(2πh̄)n

∫
T �

q M
eiup/h̄f (q, p)

dp

µ(q)
. (3.8)

Lemma 3. The integral kernel F of the operator corresponding to the symbol f ∈ D(T ∗M)

is given by

F(a, b) = f ∼(a ∨ b, a ∧ b)

k(a, b)
, (3.9)
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Figure 2. Geodesic midpoint and velocity in M.

where a ∨ b is the geodesic midpoint (3.7) and a ∧ b is the geodesic velocity at the midpoint
(figure 2)

a ∧ b
def= Va∨b(a) − Va∨b(b) = 2Va∨b(a). (3.10)

In the flat case M = Rn, one has |k(a, b)| = 1, and (3.5) and (3.9) become the standard
Wigner transform in the presence of a magnetic field.

Using (3.9), one can readily compose the product of two operators and find a simple
composition rule in terms of Fourier-imaged symbols. To formulate the result, let us recall
that the tangent bundle TM is endowed with a natural groupoid multiplication [27]

n′, n′′ �→ n′ ◦ n′′ (3.11)

by means of the left and right (target and source) mappings

l̃ : TM → M, l̃(n)
def= exp

q

(u

2

)
,

r̃ : TM → M, r̃(n)
def= exp

q

(
−u

2

)
, n ≡ (q, u) ∈ TM.

Namely, the product (3.11) of two elements n′, n′′ ∈ TM is well determined iff r̃(n′) = l̃(n′′),
and in this case one has l̃(n′ ◦ n′′) = l̃(n′), r̃(n′ ◦ n′′) = r̃(n′′). Note that the mappings l̃, r̃

themselves can be expressed in terms of the groupoid multiplication as

l̃(n) = n ◦ n−1, r̃(n) = n−1 ◦ n,

where n−1 ≡ (q,−u) is the element inverse to n in TM.

Lemma 4. Composition of Fourier-imaged symbols over TM is given by the groupoid
modified convolution

(f ∼ � g∼)(n) =
∫

n=n′◦n′′

κ(n)

κ(n′)κ(n′′)
f ∼(n′)g∼(n′′) dm. (3.12)

Here, n, n′, n′′ are points from TM, the function κ(n) ≡ k(l̃(n), r̃(n)) is given by (3.6) and
by the left and right mappings of the groupoid structure (3.11). The integration in (3.12) is
taken with respect to the measure dm(r̃(n′)) = dm(l̃(n′′)) over the manifold M.

Formula (3.12) belongs to the class of Connes’ type tangential groupoid quantization
formulae [4, 27, 31]. Note that in the convolution integrand (3.12), we have an additional
groupoid cocycle

C(n′, n′′) = κ(n′ ◦ n′′)
κ(n′)κ(n′′)

= |C(n′, n′′)| exp

{
i

h̄

∫
�(n′,n′′)

F

}
. (3.13)
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Figure 3. Geodesic triangle in �(n′, n′′) in M.

The cocycle property

C(n,m ◦ l)C(m, l) = C(n ◦ m, l)C(n,m) (3.14)

guarantees the associativity of the modified groupoid convolution (3.12).
The phase of the cocycle (3.13) is just the magnetic flux through the triangle �(n′, n′′) in

M bounded by geodesics (figure 3) with midpoints q, q ′, q ′′ and mid-velocities u, u′, u′′ such
that

n′ = (q ′, u′), n′′ = (q ′′, u′′), n′ ◦ n′′ = (q, u).

This phase is similar to its form in the Euclidean case [4], but now it also senses the non-
Euclidean connection on M. On the phase space level, the property (3.14) is equivalent to the
Stokes theorem applied to the geodesic tetrahedron in M with sides corresponding to elements
n,m, l,m ◦ l, n ◦ m, l ◦ n, n ◦ m ◦ l ∈ TM.

The amplitude C(n′, n′′) of the cocycle (3.13) obtained from (3.6) is

|C(n′, n′′)| =
(

jq(c)

jq ′(a)jq ′′(b)
· eq(a)eq(c)

eq ′(a)eq ′(b)eq ′′(b)eq ′′(c)

)1/2

.

This amplitude is an additional ‘geodesic’ contribution to the groupoid cocycle structure
(3.13).

Obviously, one has the following proposition.

Proposition 1. The quantization mapping f → f̂ , defined by (3.4) and (3.9), is an
isomorphism between the algebra L = L2(T ∗M, dl) and the algebra of all Hilbert–Schmidt
operators acting on the Hilbert space H = L2(M, dm). The quantum product � in the algebra
L is generated by the groupoid modified convolution (3.12) as follows:

(f � g)∼ = f ∼ � g∼. (3.15)

Now we would like to extend the quantization mapping to a wider algebra.
Examining formula (3.12), one can easily see that the class D(TM) is invariant with

respect to the � convolution. Moreover, the class of C∞-functions on T M with compact
support in tangential directions is a D(TM)-module with respect to this convolution. Thus,
one is led to the following definitions.

Denote by F = F(T ∗M) the space of functions on T ∗M whose momentum Fourier
image belongs to D(TM).
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Further, denote by P = P(T ∗M) the space of C∞-functions on T ∗M which are
polynomials in momenta. Let P l ⊂ P be the subspace which consists of polynomials of
degree l in momenta.

From the above discussion and the definitions of section 2, we have the following
propositions.

Proposition 2. F is a normal subalgebra of the Hilbert algebra L = L2(T ∗M).

Proposition 3. The space P is an involutive subalgebra in F� with the gradation
P l � Pm ⊂ P l+m. The commutator in the algebra P is graded as follows:

[P l ,Pm]� ⊂ P l+m−1, l, m � 0, (3.16)

where P−1 ≡ 0. In particular, [P0,P0]� = 0.

For any f ∈ F�, the operator

f̂ : D(M) → D′(M) (3.17)

is defined by its bilinear form

(f̂ ψ, χ)H = 〈f, ρψ |χ 〉. (3.18)

Here, ρψ |χ is the Wigner function

ρψ |χ (x)
def= (�xψ, χ)H. (3.19)

It is evident that ρψ |χ ∈ F if ψ, χ ∈ D(M) and so the ‘matrix elements’ (3.18) are well
defined. In the particular case where f ∈ F , this definition of the operator f̂ coincides with
the above definitions (3.4), (3.9).

As one would expect, the Wigner function obeys the usual probability interpretation
together with the associated bound condition∫

T ∗
q M

ρψ |ψ(q, p) dp = |ψ(q)|2, |ρψ |ψ(q, p)| � 1

(πh̄)n

∫
M

(jq)
1/2|ψ |2 dm.

Lemma 5. If f ∈ P , then f̂ maps D(M) into D(M); moreover, it is a differential operator.
If f ∈ P l , then f̂ is a differential operator of order l.

Let us consider now some basic examples of functions from F� or P and the operators
(3.17) corresponding to them.

Example 1. Let 1 be the unit function on T ∗M. Then, 1 ∈ F� and 1̂ = I is the identity
operator in L2(M, dm).

Let δx be the delta function on T ∗M concentrated at the point x. Then, δx ∈ F�. The
corresponding operator is the quantizer (3.2),

δ̂x = �x.

In the Euclidean case, see [56, 57].

Example 2. Let f ∈ P1. Then, f is represented by the sum f (q, p) = ϕ(q) + fW(q, p) with
ϕ ∈ C∞(M), fW (q, p) = pW(q) and where W is a vector field on M. Obviously, ϕ̂ = ϕ

(the multiplication operator) and

f̂W = −ih̄
(
W + 1

2 divW
) − AoW. (3.20)
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Here, on the right-hand side, the field W is considered as a first-order differential operator and
div W denotes the divergence of W with respect to the measure dm. The function AoW in
(3.20) is the pairing of the vector field W with the 1-form Ao on M and Ao is a primitive of
the Faraday 2-form, i.e.

dAo = F.

This 1-form is uniquely determined by the radial gauge condition that Ao(q) is perpendicular
to the velocity of the geodesic connecting o with q;

Ao(q)Vq(o) = 0. (3.21)

An explicit formula for Ao is the following [65]:

Ao(q) =
∫ q

o

(
∂Q

∂q

)∗
F(Q) dQ, (3.22)

where Q is the geodesic from o to q, and the integral (3.22) is taken along this geodesic. The
magnetic potential (3.22) can be interpreted as the average of the Lorentz force F(Q)Q̇ with
respect to the Jacobi field along the geodesic.

At this stage, it is useful to discuss the relationship between various gauge choices and
structure of the quantizer. Definition (3.2) of �x makes no reference to any particular magnetic
potential. However, the magnetic phase flux �q , when written as a line integral, is expressed
in terms of the radial gauge by

�q(a) =
∫ a

sq (a)

Ao. (3.23)

Here, the integral is taken along the geodesic on M connecting b = sq(a) to a. The ao and
ob geodesic contributions to �q(a) vanish by virtue of the radial gauge condition (3.21).
Examples 2 and 3 demonstrate the dependence on just this special radial gauge 1-form Ao. If
one modifies the definition of the quantizer by replacing Ao in (3.23) by a magnetic vector
potential in some other gauge, say A, then the potential A will replace Ao in the quantization
of the momentum coordinate, (3.20). We conclude that although the quantum algebra is gauge
invariant, its representation depends on the gauge choice.

In the Euclidean case M = Rn, the 1-form (3.22) coincides with the Valatin potential
[66] and condition (3.21) is the Dirac gauge condition (see details in [4]).

Example 3. Let M be a covariantly constant bivector field on M and fM(q, p) ≡
Mjk(q)pjpk,∀p ∈ T ∗

q M. Then, fM ∈ P2 and

f̂M = (−ih̄∇j − Ao
j

)
Mjk

(−ih̄∇k − Ao
k

)
,

where ∇ is the covariant derivative defined by the connection � on M and Ao
j are components

of the 1-form (3.22).

In particular, let � be the Levi–Civita connection and g = ((gjk)) be the metric tensor on
M. Then,

̂gjk(q)pjpk = gjk
(−ih̄∇j − Ao

j

)(−ih̄∇k − Ao
k

)
.

If the magnetic field is absent, this reduces to −h̄2� (the Laplace operator on M).

Example 4. Let W be a vector field on M and r ∈ C∞(M). Consider the function on T ∗M
given by

rW (q, p) ≡ r(q) exp
{ i

h̄
pW(q)

}
, p ∈ T ∗

qM. (3.24)
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Suppose the following condition holds:

the matrix 1
2∂W(b)/∂b[∂Va(b)/∂b]−1 has no eigenvalues ±1 for any a, b ∈ M. (3.25)

Then, rW ∈ F�.

Indeed, by computing rW
∼ and transforming this to the kernel form (3.9), one obtains

the delta function δ(W(a ∨ b) + a ∧ b), which must be a well-defined distribution in both a
and b (in order to achieve the embedding rW ∈ F�). Thus, it is sufficient to assume that both
determinants

det
∂

∂a
(W(a ∨ b) + a ∧ b) �= 0, det

∂

∂b
(W(a ∨ b) + a ∧ b) �= 0 (3.26)

are non-zero for all a, b ∈ M. This is equivalent to condition (3.25).
The operator corresponding to the symbol rW , subject to condition (3.25), acts in H as

(r̂Wψ)(a) =
Jq

(
exp

q

(− 1
2W(q)

))1/2∣∣det
(
∂Vq(a) + 1

2∂W(q)
)∣∣ r(q) e−i�q(a)/h̄ψ

(
exp

q

(
1

2
W(q)

)) ∣∣∣∣
q=Q(a)

, (3.27)

where Q(a) is the solution of the equation

exp
Q

(− 1
2W(Q)

) = a. (3.28)

Now, consider the specific class of autoparallel vector fields, i.e. those satisfying the
identity

∇WW = 0 or Wj∂jW
k + �k

jsW
jWs = 0.

In this case, the flow Rt : M → M of the field W is given by

Rt(q) = exp
q
(tW(q)). (3.29)

Note that condition (3.25) is satisfied automatically and equation (3.28) now reads R−1/2(Q) =
a, and so, Q(a) = R1/2(a).

Moreover, exp
q

(
1
2W(q)

) = expa(W(a)) and so ψ
(
exp

q

(
1
2W(q)

)∣∣
q=Q(a)

= ψ(R1(a)).

Thus, the operator r̂W acts as a shift operator along the trajectories of the field W .

Lemma 6. Let W be an autoparallel vector field on M, generating the flow (3.29). Set

rt (q)
def= det DVq(R

t/2(q))

(
det dRt/2(q) · det dR−t/2(q)

jq(Rt/2(q))

)1/2

. (3.30)

Then, the family

r̂ t
W ≡

̂
rt exp

{
it

h̄
fW

}
(t ∈ R), (3.31)

where fW(q, p) ≡ pW(q), forms a one-parameter group of unitary operators in H acting by
the formula (

r̂ t
Wψ

)
(a) =

√
Dm(Rt(a))

Dm(a)
exp

{
i

h̄

∫
πt (a)

F

}
ψ(Rt(a)). (3.32)

Here, the boundary of a surface πt(a) ⊂ M is composed of three geodesics connecting the
points o → Rt(a) → a → o.

Indeed, the operator given by (3.32) is automatically unitary. So, to prove the lemma,
we just need to compare formulae (3.32) and (3.27), and choose an appropriate amplitude
function r.
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Note that the mapping Rt : M → M can be naturally lifted up to the mapping

γ t
W : T ∗M → T ∗M, γ t

W

(
q

p

)
=

(
Rt(q)

dRt(q)
−1∗

(p + βt )

)
. (3.33)

Here, the covector βt ∈ T ∗
q M is defined by βt = A(q,Rt (q)), where

A(q, a)
def=

∫ q

a

(
∂Q

∂q

)∗
F(Q) dQ. (3.34)

The potential A(q, a) ∈ T ∗
q M is the version of (3.22) with the initial point a instead of o:

dqA(q, a) = F(q),A(q, a)Vq(a) = 0. In particular, if a = o, then A(q, o) ≡ Ao(q) in the
notation of (3.22).

Corollary 1. Let W be an autoparallel vector field on M and g ∈ P1. Then, the following
permutation formula holds on the dense domain D(M) ⊂ H:

r̂ t
W · ĝ · r̂ t

W

−1 = ĝt
W , gt

W

def= γ t
W

∗
g. (3.35)

Thus, we see that the unitary operators r̂ t
W with symbols of exponential type (3.31) play the

role of the quantum transformations corresponding to the classical symplectic transformations
γ t

W (3.33). Permutation formula (3.35) belongs to the general class of Fock-type formulae
[67] which relate classical symplectic transformations to quantum unitary operators (see also
in [38, 45, 64]).

Properties (3.16) and (3.35) which we derived form the definition of the quantizer (3.2)
actually determine the quantization uniquely.

Proposition 4. If a quantization obeys the axioms (2.6) and the graded commutator property
(3.16), and if for any autoparallel vector field W on M there is a function rt ∈ C∞(M) such
that the operator r̂ t

W (3.31) is unitary and the property (3.35) holds, then this quantization
coincides with the one defined by (3.5) and (3.9).

These conditions for uniqueness are, in a sense, analogous to those known in the Euclidean
case with no magnetic field [39–41], but our proposition 4 uses different logical assumptions.

We call the quantization defined by (3.5) and (3.9) a magneto-geodesic quantization.
Observe that if the form of the quantizer kernel is a priori assumed to be of the type

(3.2) having the phase and δ-function structure given there but with unknown amplitude, then
requiring that �x obey axioms (2.6) fixes the amplitude. The additional properties (3.16)
and (3.35) in proposition 4 were introduced to uniquely select the δ-function and the phase
function of (3.2).

Note that in the case F = 0 (no magnetic field), the quantization which we uniquely
identify above, should coincide with the one suggested in [31]. Our formulae (3.5) and (3.9)
in this case are similar to formulae (7) from [31], but a non-trivial recalculation of the Jacobian
in the cochain (3.6) is required in order to bring it into the form used in [31].

Comparison of our quantization formulae (3.5) and (3.9) with the versions introduced
in [19, 23, 25, 26, 28, 30, 33] shows a difference in the amplitude factor k of (3.6) and
this corresponds with the fact that the last two axioms in (2.6) do not hold for those other
quantizations.
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4. Magneto-geodesic reflections

The magneto-geodesic quantization defined in the previous section is based on the quantizer
structure. We now analyse this structure from the viewpoint of symplectic transformations in
the phase space ≺T ∗M, ω�.

First note that the quantizer �x can be decomposed into the product of its unitary part
◦
�x

and its modulus |�x | as follows:

�x = |�x | ·
◦
�x, (4.1)

where x = (q, p) ∈ T ∗M. Here, |�x | is the positive square root of �
†
x�x = �2

x . It has the

form of a multiplication operator |�x | = (πh̄)−n
√

jq . The unitary part
◦
�x is

◦
�x =

√
Dm(sq)

Dm
exp

{
2i

h̄
pVq +

i

h̄
�q

}
s∗
q , (4.2)

where s∗
q is the operator in H = L2(M, dm) generated by the geodesic reflection

(s∗
qψ)(q ′) = ψ(sq(q

′)), ψ ∈ H.

One can continue this decomposition and represent
◦
�x as the product of two unitary

factors
◦
�x= Ex · Tx, (4.3)

which are defined by

Ex ≡ exp

{
2i

h̄
pVq +

i

h̄
�q

}
, Tx ≡

√
Dm(sq)

Dm
s∗
q . (4.4)

Note that both Ex and Tx are unitary and they both commute with |�x |. In addition, Tx and
◦
�x are self-adjoint.

Now we would like to associate the unitary factors in (4.3) with symplectic transformations
of phase space. This is achieved by means of a Fock procedure like (3.35).

Proceed first with the operator Tx . For each x = (q, p) ∈ T ∗M, define the transformation
tx of the phase space by the following formula:

tx

(
q ′

p′

)
=

(
sq(q

′)

dsq(q
′)−1∗(p′ + βq(q

′)
)) . (4.5)

Here, q ′ runs over M, p′ ∈ T ∗
q ′M, and the 1-form βq on M is determined by

βq = Ao − s∗
qA

o, (4.6)

where Ao is the 1-form (3.22) and s∗
q denotes the pullback of a 1-form. Obviously, the mapping

tx preserves the form ω (1.3).

Lemma 7. For any g ∈ P1, the permutation formula

TxĝT −1
x = t̂∗x g (4.7)

holds on the dense domain D(M) ⊂ H.

Formula (4.7) is easily derived from (3.20) and (4.5). It relates the unitary operator Tx

in the Hilbert space H = L2(M, dm) to the symplectic transformation tx on the phase space
≺T ∗M, ω�.
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Now we proceed in the same way with the operator Ex . For each x = (q, p) ∈ T ∗M, let
us define the transformation ex of phase space as follows:

ex

(
q ′

p′

)
=

(
q ′

p′ − 2 dVq(q
′)∗p − d�q(q

′)

)
. (4.8)

Here, dVq is the differential of the mapping Vq = exp−1
q

. This transformation preserves the
form ω.

Lemma 8. For any g ∈ P1, the permutation formula

ExĝE−1
x = ê∗

xg (4.9)

holds on the dense domain D(M) ⊂ H.

This formula relates the unitary Ex with the symplectic ex and follows without difficulty
from (3.20) and (4.4).

As a consequence of these calculations, we have
◦
�x ĝ

◦
�x

−1 = ExTxĝT −1
x E−1

x = ê∗
xt

∗
x g,

for any g ∈ P1. Thus, one obtains the composition of two symplectic transformations

σx
def= tx ◦ ex. (4.10)

Corollary 2. The symplectic transformations {σx} are related to the unitary part of the
quantizer by the identity

◦
�x ĝ

◦
�x

−1 = σ̂ ∗
x g, (4.11)

for any g ∈ P1 and any x ∈ T ∗M. These identities hold on the dense domain D(M) ⊂ H.

From formulae (4.5) and (4.8) and from the equalities

d�q(q
′) = βq(q

′) − αq(q
′), αq(q

′) def= A(q ′, q) − dsq(q
′)∗A(sq(q

′), q), (4.12)

the symplectic mapping σx is determined to be

σx

(
q ′

p′

)
=

(
sq(q

′)

dsq(q
′)−1∗[p′ − 2 dVq(q

′)∗p + αq(q
′)]

)
. (4.13)

Here, the potential A is given by (3.34). Note that the potential A and thereby the right-hand
side above is gauge independent, although (4.5) and (4.8) are gauge dependent (they depend
on a choice of the point o in the potential Ao in (3.22)).

Let us check the simplest properties of the family of mappings (4.13). If the running point
x ′ = (q ′, p′) coincides with x, then σx(x

′)|x ′=x = x. Thus, the point x is a fixed point of the
transformation σx .

Furthermore, from the evident quantum permutation relations

TxEx = E−1
x Tx, T 2

x = I,

one obtains the corresponding classical counterparts

ex ◦ tx = tx ◦ e−1
x , t2

x = id.

Definition (4.10) then implies

σ 2
x = tx ◦ ex ◦ tx ◦ ex = tx ◦ tx ◦ e−1

x ◦ ex = id.

Thus, corollary 2 can be completed as follows.

Corollary 3. The family {σx |x ∈ T ∗M} of symplectic transformations on the space ≺T ∗M, ω�
is given by formula (4.13) and possesses the properties:
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• x is a unique and isolated fixed point of σx;
• each σx is a reflection, i.e. σ 2

x = id.

This family of reflections can be considered as a lift to T ∗M of the family of reflections
{sx} given on M. We call σx a magneto-geodesic reflection. The maps {σx} generalize the
family of magnetic reflections found in [5] for the phase space ≺T ∗Rn, ω� with the Euclidean
connection on M = Rn. Now our reflections (4.13) combine both a non-trivial magnetic field
and a non-trivial affine connection on M.

We note that the correspondence between the quantizer and the phase space reflections
was observed in [56] for the Euclidean space R2n = T ∗Rn with no magnetic field, see also
[57, 58]. In this latter case, the reflections are just σx(x

′) = 2x − x ′.
In the general phase space T ∗M, by using the magneto-geodesic reflections σx , one can

easily define the notions of σ -midpoints and σ -reflective curves.
Namely, the point x ∈ T ∗M is called a σ -midpoint between x ′, x ′′ ∈ T ∗M if x ′′ = σx(x

′).
From (4.13), it follows that any two points from T ∗M have a unique σ -midpoint.

A continuous curve passing through a point x ∈ T ∗M is called σ -reflective with respect
to x if it consists of pairs of points with the midpoint x. The projection of the σ -reflective
curve from T ∗M onto M is a reflective curve in M, and vice versa, any reflective curve from
M (in particular, the geodesic) can be lifted to a σ -reflective curve on T ∗M (but of course,
not uniquely).

5. Integral formula for quantum product

Next, we present an explicit formula for the product f � g, expressed directly in terms of the
functions f and g. The definition of �-product was given in (3.15). In principle, one could
use (3.15) to compute f � g. But it is convenient to use the equivalent representation (2.7).

First we compute the distribution (2.8), that is the trace of the composition of three
quantizers �x�y�z. Label the phase space points here by

x = (a, ξ), y = (b, η), z = (c, ζ ), where

ξ ∈ T ∗
a M, η ∈ T ∗

b M, ζ ∈ T ∗
c M.

(5.1)

Let (q, q ′) denote the two arguments of the integral kernel of the composition �x�y�z.
Employing (3.2) gives

(2πh̄)n · kernel(�x�y�z)(q, q ′) = T
ξ,η,ζ

a,b,c (q)δscsbsa(q)(q
′), (5.2)

T
ξ,η,ζ

a,b,c (q) = (πh̄)−2n exp
{
S

ξ,η,ζ

a,b,c

}
ϕa,b,c(q). (5.3)

The phase and amplitude functions in (5.3) are

S
ξ,η,ζ

a,b,c (q) = 2[ξVa(q) + ηVb(sa(q)) + ζVc(sbsa(q))] + �a(q) + �b(sa(q)) + �c(sbsa(q)),

(5.4)
ϕa,b,c(q) = 2n[Ja(q)Jb(sa(q))Jc(sbsa(q))]1/2. (5.5)

Clearly, T
ξ,η,ζ

a,b,c (q) is a non-singular, continuous function of all its arguments.
The integral kernel (5.2) is singular. Therefore, in order to evaluate the trace of the

corresponding operator, we first contract the distribution (5.2) with a test function φ ∈ D(M)

by the parameter c ∈ M. This computation is implemented by using the formula∫
M

δscsbsa(q)(q
′)φ(c) dm(c) = φ(c)

∣∣∣∣Dm(scsbsa(q))

Dm(c)

∣∣∣∣−1

c=q ′∨sbsa(q)

. (5.6)
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Figure 4. Mapping scsbsa(q) = q ′.

Figure 5. Fixed point Q of the compound reflection scsbsa .

On the right-hand side of this formula, the point c is taken to be the midpoint q ′ ∨ sbsa(q) (see
figure 4).

In order to evaluate the trace, we have to put q = q ′ and integrate over all q ∈ M. Thus,
from (5.2) and (5.6), one obtains

(2πh̄)n
∫
M

Tr
(
�(a,ξ)�(b,η)�(c,ζ )

)
φ(c) dm(c) =

∫
M

T
ξ,η,ζ

a,b,c (q)
φ(c)∣∣Dm(scsbsa(q))

Dm(c)

∣∣
∣∣∣∣
c=q∨sbsa(q)

dm(q).

(5.7)

The mapping

q �→ c = q ∨ sbsa(q) (5.8)

is smooth, but it can be degenerate. The Jacobian of this mapping is∣∣∣∣Dm(c)

Dm(q)

∣∣∣∣ = |det(I − d(scsbsa)(q))| ·
∣∣∣∣Dm(scsbsa(q))

Dm(c)

∣∣∣∣−1

. (5.9)

So, the degeneracy of (5.8) is controlled by the determinant

Ja,b,c(q)
def= |det(I − d(scsbsa)(q))|. (5.10)

Here, the point c is assumed to be the image point of the mapping (5.8).
In each connected domain M0 ⊂ M, where the Jacobian (5.10) is not zero, one can

invert the mapping (5.8) and uniquely express q as a function of c (and of a, b as well):
q = Q(a, b, c). Obviously, Q is the fixed point of the composition of three reflections (see
figure 5):

scsbsa(Q) = Q. (5.11)

Inside the domain M0, the solution of this fixed-point problem exists and is unique. At the
boundary of the domain M0, where the Jacobian (5.10) becomes zero, the solution of (5.11)
is not infinitesimally isolated.
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From (5.7) and (5.9), it follows that

(2πh̄)n
∫
M

Tr(�(a,ξ)�(b,η)�(c,ζ ))φ(c) dm(c) =
∫
M

T
ξ,η,ζ

a,b,c (q)Ja,b,c(q)−1φ(c)

∣∣∣∣Dm(c)

D(q)

∣∣∣∣ dm(q),

and so, one has the following formula for the distribution K� in (2.8):

K�(x, y, z) = (2πh̄)n Tr(�(a,ξ)�(b,η)�(c,ζ )) =
∑
Q

1

Ja,b,c(Q)
T

ξ,η,ζ

a,b,c (Q). (5.12)

The summation is taken over all fixed points of (5.11).
If the triple (a, b, c) is such that there is no solution of the fixed-point problem (5.11),

then the value of the trace (5.12) is just zero.
If the triple (a, b, c) is such that there is a solution of the fixed-point problem (5.11) which

is not infinitesimally isolated (the Jacobian (5.10) is zero), then the value of the trace (5.12)
is infinite. The precise description of what this ‘infinity’ actually is, is given by the integral
(5.7) (where there are no singularities at all).

Note that the amplitude factor on the right-hand side of formula (5.12) is derived from
(5.3) and (5.5) and the definition of the Jacobian Ja at the beginning of section 3. Thus, we
obtain the amplitude

ϕ(a, b, c)
def= ϕa,b,c(Q) = 2n[ja(Q)jb(sa(Q)jc(sbsa(Q)) · |det d(scsbsa)(Q)|]1/2, (5.13)

where Q = Q(a, b, c) is the solution of (5.11).
The phase of the exponential factor in (5.12) can be represented in the following

geometrical form.

Lemma 9.

S
ξ,η,ζ

a,b,c (Q) =
∫

�(x,y,z)

ω. (5.14)

Here, the symplectic form ω is determined by (1.3), the points x, y, z ∈ T ∗M are given by
(5.1) and �(x, y, z) is a triangle in T ∗M whose sides are σ -reflective curves with midpoints
x, y, z.

Indeed, the symplectic area on the right-hand side of (5.14), by Stokes theorem, can be
represented as the sum of three integrals∫

�(x,y,z)

ω =
∫ Q

Q′
(p̃ dq̃ + A0) +

∫ Q′

Q′′
(p̃ dq̃ + A0) +

∫ Q′′

Q

(p̃ dq̃ + A0). (5.15)

Here, Q′ = sa(Q),Q′′ = sbsa(Q), each integral (5.15) is taken along the geodesics through
the midpoints a, b, c, respectively, and p̃ ∈ T ∗M denotes the value of the momentum on
the σ -reflective curves over these geodesics. The magnetic potential A0 is a primitive of the
Faraday form dA0 = F . Using (3.23), we conclude that the three integrals of A0 in (5.15)
correspond to three summands with the functions �a,�b,�c in (5.4), and the three other
integrals of p̃ dq̃ contribute to the terms containing the momenta ξ, η, ζ . For example, in the
first integral of (5.15), one has∫ Q

Q′
p̃ dq̃ =

∫ Q

Q′
(dVa(q̃)∗ξ − ba(q̃)) dq̃ =

∫ Q

Q′
d(ξVa(q̃)) = ξVa(Q) − ξVa(Q

′) = 2ξVa(Q).

In the above formula, ba ≡ A0 − 1
2 d�a is used to make the curve {(q̃, p̃)} to be σ -reflective

with respect to the midpoint x = (a, ξ).
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Thus, from (2.7), (2.8) and formulae (5.12)–(5.14), we obtain the following result:

(f � g)(x) = 1

(πh̄)2n

∫ ∫
C(x)

∑
exp

{
i

h̄

∫
�(x,y,z)

ω

}
ϕ(x, y, z)

J (x, y, z)
f (y)g(z) dy dz. (5.16)

In this formula,

• all objects are independent of the choice of the measure on the manifold M and are
determined by an affine structure � and a closed 2-form F on M;

• points x, y, z belong to the phase space T ∗M and points x, y, z are their projections
onto M;

• the positive function ϕ ∈ C∞(M × M × M) is given by (5.13);
• the Jacobian J (x, y, z) = |det(I − d(szsysx)(Q))| is determined by the differential of

the composition szsysx of three �-geodesic reflections in M with respect to midpoints
z, y, x, where Q is the fixed point of this composition;

• the magnetic form ω (1.3) is integrated in (5.16) over surfaces (or membranes) which are
‘triangles’ �(x, y, z) in T ∗M whose sides are σ -reflective curves with midpoints x, y, z.
The projection of �(x, y, z) onto M are geodesic triangles �(x, y, z) with midpoints
x, y, z;

• the domain of integration in (5.16) is a cotangent ‘cylinder’ C(x) = T ∗(M ×x M) over
the subset M ×x M consisting of all those pairs of points y, z ∈ M × M for which the
triangle �(x, y, z) exists. The sum

∑
is taken over all such triangles.

Theorem 1. The associative product of functions over the phase space T ∗M, which
corresponds via (2.3) to the magneto-geodesic quantization, is determined by formula (5.16).
This formula acts directly on the subalgebra F(T ∗M) of functions whose momentum Fourier
image belongs to D(TM) and is extended to the algebra F� (and to its subalgebra P) by the
procedure (2.11).

The subset M ×x M can be called the domain of influence of the point x ∈ M. Inside
M ×x M, the Jacobian J is not zero. In general, the domain of influence M ×x M does not
coincide with the whole M×M. So, if the function f ⊗ g is localized outside of C(x), then
the integral (5.16) vanishes in a neighbourhood of the fibre T ∗

x M.
As an example consider the Lobachevski plane, M = H 2, given by the hyperboloid in

three-dimensional Euclidean space: H 2 ≡ {
q ∈ R3

∣∣q2
1 + q2

2 − q2
3 = −1

}
. The Riemannian

structure on H 2 is induced from the Euclidean structure on R3; the connection ∇ on H 2 is the
usual Levi–Civita connection. In this case, it is known (cf [68, 69]) that the geodesic triangle
with midpoints xyz exists iff

−1 < det|xyz| < 1 (5.17)

(here xyz are considered to be 3-vectors and |xyz| denotes the 3 × 3 matrix of their
components). Under condition (5.17), such a triangle is unique. If one fixes y, z, then
the subset Hyz of points x ∈ H 2 obeying (5.17) looks like a tubular neighbourhood of the
geodesic passing through b and c. Certainly, Hyz is a proper subset in H 2, that is Hyz �= H 2

if y �= z. Thus, if x /∈ Hyz, then (y, z) /∈ H 2 ×x H 2. Therefore, the domain of influence
H 2 ×x H 2 is a proper subset in H 2 × H 2.

We see that the quantum product (5.16) determines the distribution

K�(f ⊗ g ⊗ l) = 〈f � g, l〉, (5.18)

whose support, in general, does not coincide with the whole T ∗M × T ∗M × T ∗M. The
topological boundary of this support can be considered as a quantum front

front(�)
def= ∂(supp K�). (5.19)
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From one side of this boundary, the distribution K� is identically zero. We call this phenomenon
a front effect.

Something close to this was mentioned in the interesting note [69] following ideas of
geometric quantization, but no actual construction of any associative product was produced
there.

The phase space of the type T ∗M, which we investigate in this paper, and in particular
the space T ∗H 2 seems to be the first instance where the front effect for the �-product is
mathematically identified.

The kernel K� can be considered as a product of two δ-functions

K�(x, y, z) = (δy � δz)(x).

The set supp(δy � δz) is the cylinder T ∗Myz over the domain Myz ⊂ M × M (consisting of
those x for which the geodesic triangle �(x, y, z) exists). Outside this cylinder, the distribution
δy �δz is identically zero. The boundary of T ∗Myz is a front of the ‘wave’ δy �δz which travels
in the phase space T ∗M when the points y and z move away from each other.

Note that it is not possible to detect the front effect in classical mechanics or even in the
formal deformation approach where instead of exact associative product like (5.16), one uses
a formal asymptotic power series in h̄.

Also note that in the approach based on ideas of pseudodifferential operator theory
[26, 28, 29, 34], where the �-product is considered only on symbols whose p-Fourier transform
is localized near zero, one can introduce under the integral (5.16) a cut-off function. This
function is identically 1 for x, y, z close enough to each other, but becomes 0 if x, y, z move
away from each other. In this way, one can eliminate all the difficulties related to the possible
existence of conjugate points on geodesics or the non-existence of triangles. Formula (5.16),
with the cut-off function, works for arbitrary affine manifolds M; no front effect exists in
this approach and no summation over multiple triangles is needed. Of course, this ‘cut-off
method’, in general, destroys the associativity of the �-product. But with this approach, one
can keep associativity in the algebra P of symbols polynomial in momenta. Thus, we conclude
that formula (5.16) works in the algebra P over an arbitrary manifold M.

Looking forward to section 6, we note that the coefficients of the asymptotic expansion
(1.6), (6.1) of the �-products are insensitive to the cut-off function, since they are derived from
the diagonal of the exact product (5.16). Thus, the h̄ → 0 asymptotic expansion of the product
(5.16) works over an arbitrary manifold M.

We stress that the core result of theorem 1 is the explicit formula for an associative
quantum product over the phase space T ∗M. This formula is exact, not a deformation one,
and even not a semiclassical one. Under the semiclassical approach, the leading term of the
asymptotics of the product kernel K� is known over general phase spaces [70]. The membrane
formula like (5.14) for the phase of K� was first suggested in [71] as a formula for the ‘action’
on the graph of groupoid multiplication, and it was proved in [70], in the general symplectic
case, that indeed (5.14) is the correct solution of the Cauchy problem for the phase function.
In the Euclidean case, membrane formulae of a similar type were discovered by Berry [72] for
the asymptotics of the Wigner function (see also [73] for solutions of the Cauchy problem).
The magnetic version of these formulae was first obtained and investigated in detail in [4, 5],
the case of symmetric spaces was studied in [74], and for general manifolds, see [75, 76].

6. Magneto-geodesic connection and h̄-expansion of the quantum product

In this section, we investigate the asymptotic properties of the product f � g in the classical
approximation as h̄ → 0 and express the results in terms of magneto-geodesic covariant
derivatives over phase space T ∗M. It is assumed that the functions f, g are h̄ independent.
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The integral (5.16) determining the quantum product contains a rapidly oscillating
exponential factor and a smooth (non-oscillating) amplitude. The exponent phase has a
stationary point at y = x, z = x, which is isolated and non-degenerate. Therefore, one can
apply the standard stationary phase method [77] to derive the asymptotic expansion of the
integral (5.16) as h̄ → 0. The structure of this expansion is

(f � g)(x) =
∑
k�0

1

k!

(−ih̄

2

)k

Gk(f ⊗ g)(x). (6.1)

Here, Gk are differential operators of order 2k acting on the function f (y)g(z) and then
restricted to the diagonal (the stationary point) y = x, z = x.

Since we know that the unity function 1 is the unit element for the �-product, then

G0(f ⊗ 1) = f,

Gk(f ⊗ 1) = Gk(1 ⊗ f ) = 0, k � 1.
(6.2)

From (6.2), it follows, for instance, that

G0(f ⊗ g) = fg, G1(f ⊗ g) = 〈df,� dg〉,
where � is a 2-tensor. From the property (2.9) and the involution property f � g = g � f , we
see that � must be skew symmetric and real. In addition, the associativity of the �-product
implies the Jacobi identity for �. Thus, � is a Poisson tensor on T ∗M. It is easy to check
that � = �−1, where � is the matrix of the symplectic form ω in the exponent of (5.16).

Thus, the expansion of (6.1) takes the form

f � g = fg − ih̄

2
{f, g} − h̄2

8
G2(f ⊗ g)

∣∣∣∣
diag

+ O(h̄3), (6.3)

with the Poisson bracket {f, g} ≡ 〈 df,� dg〉.
In the general theory of deformation quantization [42, 47, 48, 50], it was observed that

the operator G2 in expansions of star products like (6.3) has to be related to a certain phase
space connection ∇, and moreover, G2 can be written in the form

G2 = (∇′�∇′′)2 + ∇′B∇′′. (6.4)

Here, B is a certain 2-tensor and the primes mark the argument (first or second) of the function
f ⊗ g to which the covariant derivative ∇ is applied.

For our specific (and exact) quantum product � over T ∗M, the generic form (6.4) can be
verified and explicit formulae for ∇ and B can be found directly from the asymptotic expansion
of the integral (5.16).

But we also could match the quantization with a phase space connection in another way.
The quantization is given by the quantizer �x , which in turn defines a family of symplectic
transformations σx via (4.13). The transformations σx acting on T ∗M are the phase space
analogues of the geodesic reflections sq acting on M. These latter reflections are generated
by the connection ∇ over M. The Christoffel symbols of this connection are determined via
sq as follows:

�(q) = − 1
2D2sq(q

′)
∣∣
q ′=q

,

where D denotes derivatives with respect to argument q ′ ∈ M. We can just mimic this formula
to define a connection over T ∗M

�(x) = − 1
2D2σx(x

′)
∣∣
x ′=x

, (6.5)

where D denotes derivatives by the argument x ′ ∈ T ∗M. This formula indeed generates a
connection for any family of reflections, and such a connection is automatically symplectic
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if these reflections are symplectic [70]. In our magneto-geodesic situation, we have all these
properties of the family {σx} (corollary 3; for the Euclidean case M = Rn, see more details
in [5]).

Note that the restriction of σx to the configuration space M coincides with sq (see (4.13)),
and so, the set of Christoffel symbols � (6.5) contains the Christoffel symbols � inside itself.
Thus, � is an extension of � from the configuration space to the phase space.

Explicit calculation of the second derivatives in (6.5) using (4.13) yields

�q
qq = �(q), �p

qp = �p
pq = −�(q), �p

qq = pB(q) + C(q), (6.5a)

where

Bm
jkl

def= 1
3 S

jkl

(
2�m

js�
s
kl − ∂j�

m
kl

)
, Cjkl

def= 1
3 (∇ kFjl + ∇ lFjk), (6.5b)

and the notation S denotes cyclic summation. All other components of � vanish identically:
�

q
pq = �

q
qp = �

q
pp = �

p
pp = 0.

Let ∇ be the covariant derivative over T ∗M defined by Christoffel symbols (6.5a). We
call it the magneto-geodesic connection. We stress again that this connection is symplectic
with respect to the ‘magnetic’ symplectic structure ω (1.3), i.e.

∇ω = 0.

We see that such a ∇ is certainly related to the quantizer and so also to the �-product
(5.16). We claim that this is actually the same connection which appears in (6.4) under the
h̄-expansion of integral (5.16).

Now we demonstrate how to prove this claim. Let us fix x = (a, ξ) ∈ T ∗M. Formula
(5.4) implies that there is just one stationary point of the phase function S = S

ξ,η,ζ

a,b,c with
respect to variables y = (b, η) and z = (c, ζ ), namely, this is the point y = x, z = x. Near
this point only one summand in (5.16) contributes to the asymptotic expansion up to O(h̄∞),
namely, this is the summand corresponding to small triangles � = �(x, y, z) near the point
x. Consider x as the origin of the normal coordinate system (with respect to the connection
(6.5)). We employ normal coordinates for both variables y, z in (5.16). With this adjustment,
the integral looks like

f � g ∼
∫

R2n

∫
R2n

e
i
h̄
S(v′,v′′)L(v′, v′′)f (expx(v

′))g(expx(v
′′))

dv′ dv′′

(πh̄)2n
. (6.6)

Here, the integration space, R2n × R2n, is just Tx(T
∗M) × Tx(T

∗M); v′v′′ are normal
coordinates and the phase function S = ∫

�
ω, cf (5.14). The amplitude function L is given by

(5.10) and (5.13): namely, L = (ϕ/J )l ⊗ l, where l is the density of the Liouville measure
on T ∗M expressed in normal coordinates.

Lemma 10. The following Taylor expansions hold

S = S2 + S4 + O6, L = 1 + L2 + O4, l = 1 + l2 + O4, (6.7)

where S2, L2, l2 are homogeneous polynomials of degree 2 and S4 is of degree 4; the remainders
O4 and O6 are of degrees 4 and 6 in normal coordinates near zero in R2n ⊗ R2n. Formulae
for the quadratic forms S2 and L2 are

S2(v
′, v′′) = 2〈�v′′, v′〉, L2(v

′, v′′) = − 1
2 〈R(v′ − v′′), v′ − v′′〉 + l2(v

′) + l2(v
′′).

(6.8)

Here, � is the 2n × 2n matrix of the symplectic form,

� =
[

F I

−I 0

]
,



8572 M V Karasev and T A Osborn

v ∈ Rn denotes the q-components of the vector v ∈ R2n = Rn
q × Rn

p and R is the symmetric
part of the n × n Ricci tensor on M

R ls

def= 1
2

(
Rk

lks + Rk
skl

)
, (6.9)

where R = [∇,∇] is the curvature tensor (skew symmetric in the last pair of indices).

Proof. The first formula in (6.8) is obvious. Indeed, from (5.14), we claim that

S = 1
2�V ′′V ′ + O4,

where V ′, V ′′ are the sides of the linearization of the triangle �(x, y, z) at the point x = (a, ξ).
The sides V ′, V ′′ are twice as long as the normal coordinates v′, v′′ of the midpoints
y = (b, η), z = (c, ζ ) of this triangle. This is the reason for the factor of 2 in the first
formula of (6.8).

To prove the second formula in (6.8), we first deduce from (5.10) and (5.13) that

L2(v
′, v′′) = l2(v

′) + l2(v
′′) + α2(v

′, v′′) + β2(v
′, v′′). (6.10)

Here, α2 and β2 are the second-order Taylor terms about the point a of the functions

α
def= 2n|det d(scsbsa)(Q)|1/2J −1(Q),

(6.11)
β

def= [ja(Q)jb(sa(Q))jc(sbsa(Q))]1/2,

where Q is the solution of problem (5.11) in the neighbourhood of the origin point a.
The Taylor expansion of Q, in normal coordinates, results from

Q = exp
a
(v′′ − v′ + O2). (6.12)

The Jacobi matrix of the mapping scsbsa reads

d(scsbsa)(exp
a
(v)) = −I + 2(v′′ − v′ − v)� + O2.

From here and (6.12), it follows that

d(scsbsa) = −I + O2,

and so α = 1 + O4. This means that the second-order Taylor term of the function α at the
point a is just zero: α2 = 0.

The Jacobians ja, jb, jc which compose the function β in (6.11) are found in the beginning
of section 3. Here, one has

jq(exp
q
(v)) = 1 − 1

3 〈R v, v〉 + O4,

where R is defined by (6.9). Therefore,

β = 1 − 1
2 〈R(v′′ − v′), v′′ − v′〉 + O4.

Combining this with (6.10), we conclude that the second formula in (6.8) holds. �

Lemma 11. The fourth-degree contribution S4 in expansion (6.7) satisfies the following
estimate:

〈∂ ′, �∂ ′′〉S4(v
′, v′′) = O2(v′) + O2(v′′). (6.13)

Proof. The exponential map corresponding to Christoffel symbols (6.5a) has the Taylor
expansion

expa,ξ (v) =
(

a + v − 1
2�(a)v v + 1

6B(a)v v v + O(v4)

ξ + v + �(a)v v − 1
2 (ξB(a) + C(a))v v + O(v3) + O(v2v)

)
,
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where the matrices B,C are defined in (6.5b), and by v we indicate the p-component of the
vector v.

From this formula and (5.4), we derive the following expression for the fourth-degree
component S4 of the phase function:

S4(v
′, v′′) = 2〈� v′v′′, � v′v′′〉 − 2〈� v′′v′′, � v′v′′〉 + O(v′v′′3)

+ O(v′′v′′3) + O(v′v′2v′′) + O(v′′v′′2v′) + O3(v′, v′′). (6.14)

Here, the remainders do not contribute to the second-order derivatives in 〈∂ ′, �∂ ′′〉S4 and so
we do not need to know their explicit expression. The first two terms in (6.14) provide formula
(6.13). �

Now we make the rescaling v = √
h̄u in the integrand of (6.6) and use lemma 10 to get

f � g ∼
∫ ∫

eiS2(u
′,u′′)[1 + h̄(iS4 + L2) + O(h̄2)](u′, u′′)

× f (expx(
√

h̄u′))g(expx(
√

h̄u′′))
du′ du′′

π2n
. (6.15)

By expanding the exponential mappings in (6.15), we reduce the calculation of the asymptotics
of f � g to the evaluation of simple integrals like

1

π2n

∫ ∫
P2m(u′, u′′) exp{2i〈�u′, u′′〉} du′ du′′

=
m∑

r=0

(−i)r

2r r!

∑
1�lj ,sj �2n

�l1s1 · · · �lrsr
(
∂ ′
l1

· · · ∂ ′
lr
∂ ′′
s1

· · · ∂ ′′
sr
P2m

)
(0, 0), (6.16)

with some polynomials, P2m, of degree 2m, where m = 0, 1, . . ..
In order to know the kth term in expansion (6.1), one must take into account contributions

of integrals like (6.16) for degrees 2m � 2k. In this way, from (6.15), we obtain the expansion
(6.3) and formula (6.4) for the operator G2, where the tensor B is given by

Bsl = 2�sm�rl∂ ′
m∂ ′′

r L2 + �sm�rl�jk∂ ′
m∂ ′

j ∂
′′
r ∂ ′′

k S4. (6.17)

The second formula in (6.8) implies that

∂ ′∂ ′′L2 =
(
R 0
0 0

)
,

where R is given by (6.9). From (6.13), one concludes that the second term in (6.17) vanishes.
Therefore,

B = 2� ·
(
R 0
0 0

)
· �. (6.18)

Proposition 5. The curvature tensor R of the magneto-geodesic connection ∇ on T ∗M is
given by

R
qs

qiqj qk = Rs
ijk,

R
ps

pj qiqk = R
j

ski, R
ps

qipj qk = −R
ps

qiqkpj
= 1

3

(
R

j

ski + R
j

iks

)
,

R
ps

qiqj qk = 1
3 S

is
pm

(∇ sR
m
ikj + 3�m

slR
l
ijk − �m

jlR
l
iks + �m

klR
l
ijs

)
+ Msijk,
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where

Msijk
def= 1

3

(∇ i∇ sFjk + 2Rl
ijkFls + S

ijk
Rl

sijFlk

)
(magnetic curvature).

Here, R = R(q) and F = F(q) are the curvature of the connection ∇ and the magnetic tensor
on M. All other components of the curvature R vanish.

We first remark that the block R
p
qqq of the curvature tensor R is not itself a tensor. But

the part M, which we call the magnetic curvature, is a tensor on M. This part of the total
curvature entangles the magnetic field F with the curvature tensor R on M. Also note that the
only p-dependent part of the curvature is the R

p
qqq block (where p enters linearly); all other

parts are strictly q dependent.
For any symplectic connection, the Ricci tensor

Rij
def= Rk

ikj (6.19)

is symmetric [78]. Thus, for the magneto-geodesic connection on T ∗M, we have Rij = Rji .

Corollary 5. The Ricci tensor for the magneto-geodesic connection on T ∗M is given by

R = 2

3

(
R 0

0 0

)
, (6.20)

where R is the symmetric part of the Ricci tensor for the affine connection on M.

Now one just has to compare this formula for the Ricci tensor with formula (6.18) for the
tensor B in the h̄-expansion of the �-products (6.3) and (6.4).

Altogether we have proved the following statement.

Theorem 2. The magneto-geodesic product (5.16) over T ∗M has the asymptotic expansion
(6.3) with the second-order term G2 given by formula (6.4). In this formula, the connection
∇ coincides with the magneto-geodesic connections (6.5), (6.5a), and the tensor B is

B = 3�R�, (6.21)

where R is the Ricci tensor of this connection.

The magneto-geodesic connection ∇ on T ∗M entangles, on the phase space level, the
original affine connection ∇ and the magnetic field (Faraday tensor) F on M. In the case
of zero magnetic field F = 0, this connection was obtained in [28] via a version of the
deformation quantization approach by using a different star product which does not obey
axioms (2.6).

The part of the Christoffel symbol in (6.5a) which describes the ‘interaction’ between
the affine and magnetic structures on M is given by the tensor C. The tensor C contains the
symmetrized covariant derivative of the magnetic tensor F. We label this part of the connection
as the magneto-geodesic coupling tensor. The usual covariant derivative tensor ∇F we call
the magnetic inhomogeneity.

Let us examine the symmetric and skew-symmetric properties of these two tensors. We
represent this pair of tensors with the notation

F[jk]l
def= ∇ lFjk, Fj{kl}

def= Cjkl.
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Proposition 6. (a) The magnetic inhomogeneity tensor F[jk]l is skew symmetric in the first
pair of indices; the magneto-geodesic coupling tensor Fj{kl} is symmetric in the last pair of
indices. They are related to each other by the following duality formulae:

Fj{kl} = 1
3 (F[jk]l + F[j l]k), F[jk]l = Fj{kl} − Fk{j l}.

(b) Both of these tensors obey the cyclic property

S
jkl

Fj{kl} = 0, S
jkl

F[jk]l = 0. (6.22)

(c) The magneto-geodesic coupling tensor is related to the magnetic curvature tensor M by

∇jFs{ik} − ∇kFs{ij} = Misjk.

(d) On Riemannian manifolds M (with the Levi–Civita connection ∇ defined by metric g), the
current covector

js = 2
3Fs{ik}gik

satisfies the continuity equation gls∇ ljs = 0 and generates the exact 2-form � ≡ dj with
coefficients

�sm = gik
(
3Miksm + 2FilR

l
ksm

)
.

The identity d� = 0, or S∇r�sm = 0, ties together the magnetic curvature M and the
Riemannian curvature R on M.

The last statement in (6.22) is just the homogeneous Maxwell equation for the magnetic
field (that ensures that there are no Dirac monopoles) and the first identity in (6.22) is the
‘dual’ to the Maxwell equation and incorporates the magneto-geodesic coupling tensor.

Note that within the class of tensors obeying the condition SCjkl = 0, formulae (6.5a)
and (6.5b) determine a unique connection on T ∗M having the property that the symplectic
form is covariantly constant, ∇ω = 0.

In the Euclidean case M = Rn, the magneto-geodesic connection ∇ coincides with the
magnetic connection found in [5]. In this case, the curvature tensor R of ∇ (see proposition 5) is
reduced to the magnetic curvature which is just the second derivative matrix Msijk = 1

3D2
siFjk .

Thus, the curvature R is constant iff the field F is quadratic in Euclidean coordinates. In this
way, we obtained in [5] an example of a symmetric symplectic space which can be explicitly
and exactly quantized.

It should be interesting to study the equation

∇R = 0 (6.23)

for the general magneto-geodesic connection. Under condition (6.23), one again has an
example of a symmetric symplectic structure, now on T ∗M, which is explicitly and exactly
(not formally and not asymptotically) quantized. It would be interesting to compare this
construction of quantized symmetric spaces with [79, 80].
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